Bounding the error in Gaussian elimination for tridiagonal systems

نویسنده

  • Nicholas J. Higham
چکیده

If is the computed solution to a tridiagonal system Ax b obtained by Gaussian elimination, what is the "best" bound available for the error x and how can it be computed efficiently? This question is answered using backward error analysis, perturbation theory, and properties of the LU factorization of A. For three practically important classes of tridiagonal matrix, those that are symmetric positive definite, totally nonnegative, or M-matrices, it is shown that (A + E) b where the backward error matrix E is small componentwise relative to A. For these classes of matrices the appropriate forward error bound involves Skeel’s condition number cond (A, x), which, it is shown, can be computed exactly in O(n) operations. For diagonally dominant tridiagonal A the same type of backward error result holds, and the author obtains a useful upper bound for cond (A, x) that can be computed in O(n) operations. Error bounds and their computation for general tridiagonal matrices are discussed also. Key words, tridiagonal matrix, forward error analysis, backward error analysis, condition number, comparison matrix, M-matrix, totally nonnegative, positive definite, diagonally dominant, LAPACK AMS(MOS) subject classifications, primary 65F05, 65G05 C.R. classification. G. 1.3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)

In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...

متن کامل

A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced...

متن کامل

Computing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process

In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...

متن کامل

A Direct Elliptic Solver Based on Hierarchically Low-rank Schur Complements

Cyclic reduction was conceived for the solution of tridiagonal linear systems, such as the one-dimensional Poisson equation [11]. Generalized to higher dimensions, it is known as block cyclic reduction (BCR) [4]. It can be used for general (block) Toeplitz and (block) tridiagonal linear systems; however, it is not competitive for large problems, because its arithmetic complexity grows superline...

متن کامل

Tridiagonal Realization of the Anti-symmetric Gaussian Β-ensemble

Abstract. The Householder reduction of a member of the anti-symmetric Gaussian unitary ensemble gives an anti-symmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of {qi}, the first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990